Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Potential theory and Lefschetz theorems for arithmetic surfaces

Identifieur interne : 000414 ( France/Analysis ); précédent : 000413; suivant : 000415

Potential theory and Lefschetz theorems for arithmetic surfaces

Auteurs : J.-B. Bost [France]

Source :

RBID : ISTEX:FB5414D78AF82EDA59C1362B65414669205D32AA

English descriptors

Abstract

Abstract: We prove an arithmetic analogue of the so-called Lefschetz theorem which asserts that, if D is an effective divisor in a projective normal surface X which is nef and big, then the inclusion map from the support |D| of D in X induces a surjection from the (algebraic) fondamental group of |D| onto the one of X. In the arithmetic setting, X is a normal arithmetic surface, quasi-projective over Spec Z, D is an effective divisor in X, proper over Spec Z, and furthermore one is given an open neighbourhood Ω of |D|(C) on the Riemann surface X(C) such that the inclusion map |D|(C)↪Ω is a homotopy equivalence. Then we may consider the equilibrium potential gD,Ω of the divisor D(C) in Ω and the Arakelov divisor (D,gD,Ω), and we show that if the latter is nef and big in the sense of Arakelov geometry, then the fundamental group of |D| still surjects onto the one of X. This results extends an earlier theorem of Ihara, and is proved by using a generalization of Arakelov intersection theory on arithmetic surfaces, based on the use of Green functions which, up to logarithmic singularities, belong to the Sobolev space L12.

Url:
DOI: 10.1016/S0012-9593(99)80015-9


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:FB5414D78AF82EDA59C1362B65414669205D32AA

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Potential theory and Lefschetz theorems for arithmetic surfaces</title>
<author>
<name sortKey="Bost, J B" sort="Bost, J B" uniqKey="Bost J" first="J.-B." last="Bost">J.-B. Bost</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FB5414D78AF82EDA59C1362B65414669205D32AA</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0012-9593(99)80015-9</idno>
<idno type="url">https://api.istex.fr/document/FB5414D78AF82EDA59C1362B65414669205D32AA/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003358</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003358</idno>
<idno type="wicri:Area/Istex/Curation">003358</idno>
<idno type="wicri:Area/Istex/Checkpoint">001363</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001363</idno>
<idno type="wicri:doubleKey">0012-9593:1999:Bost J:potential:theory:and</idno>
<idno type="wicri:Area/Main/Merge">001520</idno>
<idno type="wicri:Area/Main/Curation">001503</idno>
<idno type="wicri:Area/Main/Exploration">001503</idno>
<idno type="wicri:Area/France/Extraction">000414</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Potential theory and Lefschetz theorems for arithmetic surfaces</title>
<author>
<name sortKey="Bost, J B" sort="Bost, J B" uniqKey="Bost J" first="J.-B." last="Bost">J.-B. Bost</name>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Département de Mathématiques, Bâtiment 425, Université Paris-Sud, 91405 Orsay Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
<settlement type="city">Orsay</settlement>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Annales scientifiques de l'Ecole normale superieure</title>
<title level="j" type="abbrev">ANSENS</title>
<idno type="ISSN">0012-9593</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">32</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="241">241</biblScope>
<biblScope unit="page" to="312">312</biblScope>
</imprint>
<idno type="ISSN">0012-9593</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0012-9593</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algebraic</term>
<term>Algebraic geometry</term>
<term>Algebraic varieties</term>
<term>Analogue</term>
<term>Annales</term>
<term>Annales scientifiques</term>
<term>Arakelov</term>
<term>Arakelov degree</term>
<term>Arakelov divisor</term>
<term>Arakelov divisors</term>
<term>Arakelov geometry</term>
<term>Arakelov intersection pairing</term>
<term>Arakelov intersection theory</term>
<term>Arithmetic</term>
<term>Arithmetic analogue</term>
<term>Arithmetic chow group</term>
<term>Arithmetic surface</term>
<term>Arithmetic surfaces</term>
<term>Biholomorphic</term>
<term>Bost</term>
<term>Canonical</term>
<term>Capacity theory</term>
<term>Cartier</term>
<term>Cartier divisor</term>
<term>Closure</term>
<term>Compact riemann</term>
<term>Compact riemann surface</term>
<term>Compact subset</term>
<term>Complex conjugation</term>
<term>Conjugation</term>
<term>Connectedness</term>
<term>Connectedness assertion</term>
<term>Connectedness theorem</term>
<term>Constant function</term>
<term>Continuous function</term>
<term>Converges</term>
<term>Corollary</term>
<term>Dirichlet</term>
<term>Dirichlet form</term>
<term>Disjoint</term>
<term>Disjoint union</term>
<term>Divisor</term>
<term>Effective divisor</term>
<term>Effective divisors</term>
<term>Effective weil divisor</term>
<term>Elliptic</term>
<term>Elliptic curve</term>
<term>Embedding</term>
<term>Equilibrium potentials</term>
<term>Equivalently</term>
<term>Faltings</term>
<term>Faltings height</term>
<term>First part</term>
<term>Function field</term>
<term>Fundamental groups</term>
<term>Generalized function</term>
<term>Geometric point</term>
<term>Good reduction</term>
<term>Green function</term>
<term>Green functions</term>
<term>Groupe fondamental</term>
<term>Harmonic</term>
<term>Harmonic function</term>
<term>Hermitian</term>
<term>Hermitian form</term>
<term>Hermitian line bundle</term>
<term>Hodge</term>
<term>Hodge index inequality</term>
<term>Hodge index theorem</term>
<term>Holomorphic</term>
<term>Holomorphic embedding</term>
<term>Homotopy equivalence</term>
<term>Ihara</term>
<term>Inequality</term>
<term>Intersection pairing</term>
<term>Intersection product</term>
<term>Inverse image</term>
<term>Irreducible</term>
<term>Irreducible component</term>
<term>Irreducible components</term>
<term>Isomorphism</term>
<term>Laplace equation</term>
<term>Lecture notes</term>
<term>Lefschetz</term>
<term>Lefschetz theorem</term>
<term>Lefschetz theorems</term>
<term>Line bundle</term>
<term>Local holomorphic</term>
<term>Main result</term>
<term>Main theorem</term>
<term>Maximum principle</term>
<term>Meromorphic function</term>
<term>Morphism</term>
<term>Neighbourhood</term>
<term>Normale</term>
<term>Normale supbrieure</term>
<term>Normale superieure</term>
<term>Normale supfirieure</term>
<term>Number field</term>
<term>Numerical effectivity</term>
<term>Open disk</term>
<term>Open neighbourhood</term>
<term>Open subscheme</term>
<term>Open subset</term>
<term>Other hand</term>
<term>Pairing</term>
<term>Polar</term>
<term>Polar subset</term>
<term>Potential theory</term>
<term>Present paper</term>
<term>Projection formula</term>
<term>Projective</term>
<term>Projective arithmetic surface</term>
<term>Projective integral</term>
<term>Projective surfaces</term>
<term>Quotient</term>
<term>Rational function</term>
<term>Real coefficients</term>
<term>Real number</term>
<term>Regular boundary point</term>
<term>Regularity</term>
<term>Resp</term>
<term>Riemann</term>
<term>Riemann surface</term>
<term>Riemann surfaces</term>
<term>Right hand side</term>
<term>Sbrie tome</term>
<term>Scientifiques</term>
<term>Sfirie tome</term>
<term>Sobolev space</term>
<term>Spec</term>
<term>Special case</term>
<term>Stein factorization</term>
<term>Subharmonic</term>
<term>Subharmonic function</term>
<term>Subharmonic functions</term>
<term>Subscheme</term>
<term>Subset</term>
<term>Supfirieure</term>
<term>Theorem</term>
<term>Tome</term>
<term>Topology</term>
<term>Variational characterization</term>
<term>Vector space</term>
<term>Vertical fibers</term>
<term>Weil</term>
<term>Weil divisor</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Algebraic</term>
<term>Algebraic geometry</term>
<term>Algebraic varieties</term>
<term>Analogue</term>
<term>Annales</term>
<term>Annales scientifiques</term>
<term>Arakelov</term>
<term>Arakelov degree</term>
<term>Arakelov divisor</term>
<term>Arakelov divisors</term>
<term>Arakelov geometry</term>
<term>Arakelov intersection pairing</term>
<term>Arakelov intersection theory</term>
<term>Arithmetic</term>
<term>Arithmetic analogue</term>
<term>Arithmetic chow group</term>
<term>Arithmetic surface</term>
<term>Arithmetic surfaces</term>
<term>Biholomorphic</term>
<term>Bost</term>
<term>Canonical</term>
<term>Capacity theory</term>
<term>Cartier</term>
<term>Cartier divisor</term>
<term>Closure</term>
<term>Compact riemann</term>
<term>Compact riemann surface</term>
<term>Compact subset</term>
<term>Complex conjugation</term>
<term>Conjugation</term>
<term>Connectedness</term>
<term>Connectedness assertion</term>
<term>Connectedness theorem</term>
<term>Constant function</term>
<term>Continuous function</term>
<term>Converges</term>
<term>Corollary</term>
<term>Dirichlet</term>
<term>Dirichlet form</term>
<term>Disjoint</term>
<term>Disjoint union</term>
<term>Divisor</term>
<term>Effective divisor</term>
<term>Effective divisors</term>
<term>Effective weil divisor</term>
<term>Elliptic</term>
<term>Elliptic curve</term>
<term>Embedding</term>
<term>Equilibrium potentials</term>
<term>Equivalently</term>
<term>Faltings</term>
<term>Faltings height</term>
<term>First part</term>
<term>Function field</term>
<term>Fundamental groups</term>
<term>Generalized function</term>
<term>Geometric point</term>
<term>Good reduction</term>
<term>Green function</term>
<term>Green functions</term>
<term>Groupe fondamental</term>
<term>Harmonic</term>
<term>Harmonic function</term>
<term>Hermitian</term>
<term>Hermitian form</term>
<term>Hermitian line bundle</term>
<term>Hodge</term>
<term>Hodge index inequality</term>
<term>Hodge index theorem</term>
<term>Holomorphic</term>
<term>Holomorphic embedding</term>
<term>Homotopy equivalence</term>
<term>Ihara</term>
<term>Inequality</term>
<term>Intersection pairing</term>
<term>Intersection product</term>
<term>Inverse image</term>
<term>Irreducible</term>
<term>Irreducible component</term>
<term>Irreducible components</term>
<term>Isomorphism</term>
<term>Laplace equation</term>
<term>Lecture notes</term>
<term>Lefschetz</term>
<term>Lefschetz theorem</term>
<term>Lefschetz theorems</term>
<term>Line bundle</term>
<term>Local holomorphic</term>
<term>Main result</term>
<term>Main theorem</term>
<term>Maximum principle</term>
<term>Meromorphic function</term>
<term>Morphism</term>
<term>Neighbourhood</term>
<term>Normale</term>
<term>Normale supbrieure</term>
<term>Normale superieure</term>
<term>Normale supfirieure</term>
<term>Number field</term>
<term>Numerical effectivity</term>
<term>Open disk</term>
<term>Open neighbourhood</term>
<term>Open subscheme</term>
<term>Open subset</term>
<term>Other hand</term>
<term>Pairing</term>
<term>Polar</term>
<term>Polar subset</term>
<term>Potential theory</term>
<term>Present paper</term>
<term>Projection formula</term>
<term>Projective</term>
<term>Projective arithmetic surface</term>
<term>Projective integral</term>
<term>Projective surfaces</term>
<term>Quotient</term>
<term>Rational function</term>
<term>Real coefficients</term>
<term>Real number</term>
<term>Regular boundary point</term>
<term>Regularity</term>
<term>Resp</term>
<term>Riemann</term>
<term>Riemann surface</term>
<term>Riemann surfaces</term>
<term>Right hand side</term>
<term>Sbrie tome</term>
<term>Scientifiques</term>
<term>Sfirie tome</term>
<term>Sobolev space</term>
<term>Spec</term>
<term>Special case</term>
<term>Stein factorization</term>
<term>Subharmonic</term>
<term>Subharmonic function</term>
<term>Subharmonic functions</term>
<term>Subscheme</term>
<term>Subset</term>
<term>Supfirieure</term>
<term>Theorem</term>
<term>Tome</term>
<term>Topology</term>
<term>Variational characterization</term>
<term>Vector space</term>
<term>Vertical fibers</term>
<term>Weil</term>
<term>Weil divisor</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: We prove an arithmetic analogue of the so-called Lefschetz theorem which asserts that, if D is an effective divisor in a projective normal surface X which is nef and big, then the inclusion map from the support |D| of D in X induces a surjection from the (algebraic) fondamental group of |D| onto the one of X. In the arithmetic setting, X is a normal arithmetic surface, quasi-projective over Spec Z, D is an effective divisor in X, proper over Spec Z, and furthermore one is given an open neighbourhood Ω of |D|(C) on the Riemann surface X(C) such that the inclusion map |D|(C)↪Ω is a homotopy equivalence. Then we may consider the equilibrium potential gD,Ω of the divisor D(C) in Ω and the Arakelov divisor (D,gD,Ω), and we show that if the latter is nef and big in the sense of Arakelov geometry, then the fundamental group of |D| still surjects onto the one of X. This results extends an earlier theorem of Ihara, and is proved by using a generalization of Arakelov intersection theory on arithmetic surfaces, based on the use of Green functions which, up to logarithmic singularities, belong to the Sobolev space L12.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Orsay</li>
</settlement>
<orgName>
<li>Université Paris-Sud</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Bost, J B" sort="Bost, J B" uniqKey="Bost J" first="J.-B." last="Bost">J.-B. Bost</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/France/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000414 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/France/Analysis/biblio.hfd -nk 000414 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    France
   |étape=   Analysis
   |type=    RBID
   |clé=     ISTEX:FB5414D78AF82EDA59C1362B65414669205D32AA
   |texte=   Potential theory and Lefschetz theorems for arithmetic surfaces
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022